Differential Geometry

Homework 10

Mandatory Exercise 1. (10 points)

Show that the curvature of $S^n \subset \mathbb{R}^{n+1}$, with the metric induced from \mathbb{R}^{n+1} , is constant. Hint: SO(n+1) acts transitively on S^n , by isometries, so it is enough to show that S^n is isotropic at $p = (1, 0, \ldots, 0)$. Find the isotropy group $G_p \subset SO(n+1)$ of p and analyze the G_p action on $T_pS^n \cong \mathbb{R}^n \subset T_p\mathbb{R}^{n+1} \cong \mathbb{R}^{n+1}$. Is it transitive on 2-planes?

Mandatory Exercise 2. (10 points)

Show that $||X_p||^2 ||Y_p||^2 - \langle X_p, Y_p \rangle^2$ gives us the square of the area of the parallelogram in T_pM spanned by X_p, Y_p . Conclude that the sectional curvature does not depend on the choice of the linearly independent vectors X_p, Y_p .

Suggested Exercise 1. (0 points)

Let M be the image of the parametrization $\varphi \colon (0,\infty) \times \mathbb{R} \to \mathbb{R}^3$ given by

 $\varphi(u, v) = (u \cos v, u \sin v, v)$

and let N be the image of the parametrization $\psi: (0, \infty) \times \mathbb{R} \to \mathbb{R}^3$ given by

$$\varphi(u, v) = (u \cos v, u \sin v, \log u).$$

Consider in both M and N the Riemannian metric induced by the Euclidean metric of \mathbb{R}^3 . Show that the map $f: M \to N$ defined by

$$f(\varphi(u,v)) = \psi(u,v)$$

preserves the Gauß curvature but is not a local isometry.

Suggested Exercise 2. (0 points)

Compute the Gauß curvature of:

- (a) the sphere S^2 with the standard metric;
- (b) the hyperbolic plane H (see Mandatory Exercise 2 on Sheet 9).

Suggested Exercise 3. (0 points)

Show that Ric is the only independet contraction of the curvature tensor, i.e. choosing any other two indices and contracting, one either gets \pm Ric or 0.

Suggested Exercise 4. (0 points)

Let M be a 3-dmensional Riemannian manifold. Show that the curvature tensor is entirely determined by the Ricci tensor.

Suggested Exercise 5. (0 points)

If ∇ is not the Levi-Civita connection can we still define the Ricci curvature tensor Ric? Is it necessarily symmetric?

Suggested Exercise 6. (0 points) Prove that the Riemann tensor is really a (1,3)-tensor.

Suggested Exercise 7. (0 points) Express the Riemann tensor in local coordinates.

> Hand in: Monday 27th June in the exercise session in Seminar room 2, MI